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ABSTRACT 
 
This research investigated the MHD Convective Flow of Jeffrey Fluid in a Parallel Permeable Moving Plate. 
The formulated partial differential equations were solved using perturbation technique and velocity and 
temperature profiles are obtained. Numerical simulation was done out using Mathematica 10.3 and the study 
of the flow with some physical parameters such as  , , ,Gr Pr M Da  and other pertinent parameters  

, , , ,Q A     influence on the velocity and temperature profiles. It was observed that the variation of the 
pertinent parameters influences the flow profiles, as it leads to increasing velocity profile with 
parameters , , ,Da Gr up  . 
 
Keywords: MHD, oscillatory, Jeffrey, convective, grashof number, hartmann number, suction parameter. 

 
INTRODUCTION 
Most fluids used in industries show non-Newtonian 
qualities; consequently, analysts nowadays days are 
more and more intrigued by such fluid as non-
Newtonian and their components. A fluid, for 
instance, non-Newtonian shows various properties 
that are distinctive a few alternative ways from the 
Newtonian fluids. Oftentimes we have seen that the 
consistency of non-Newtonian fluids is dependent 
on the shear rate. Some non-Newtonian fluids with 
shear-autonomous consistency, but still show non-
Newtonian behavious. Several salt solution and fluid 
polymers are non-Newtonian fluids as are frequently 
discovered substances, for instance, ketchup, 
custards and toothpaste, starch suspensions, 
foodstuff, slurries, beauty care merchandise and 
toiletries, maizena, paint, blood and cleansing agent 
so on. The non-Newtonians fluid is likewise very 
useful in several designing applications. The various 
kinds of non-Newtonian fluids are Casson liquid, 
Jeffrey fluid, visco-elastic fluid, couple pressure 
fluid, small scale polar fluid, control law fluid. 
Among these fluids, the foremost widely known is 
the Jeffrey fluid Hayat et al. (2012). In recent times, 
the model received distinctive attractions from the 

researchers such as Hayat et al. (2008). Ahmed et al. 
(2015) investigated the convective heat transfer of 
magneto-hydodynamics (MHD) Jeffrey fluid over a 
stretching sheet. Thereafter, hydrokinetics mixed 
convection flow and heat transfer of a Jeffrey fluid 
over an exponentially stretched plate was 
investigated by Ahmed et al. (2016). The unsteady 
MHD free flow of a Casson fluid with constant wall 
temperature was analyzed by Khalid et al. (2015).  
Moreover, mixed convective flow of power law 
fluids on a vertical wavy surface in the presence of a 
transversal magnetic flux was conjointly 
investigated by Nejad et al. (2015). Berman (1953) 
studied the streamline flow in channel with porous 
walls. Kirubhashankar and Ismail (2014) thought of 
the magnetic flux within the streamline flow of an 
electrically conducting liquid. Hassanien and 
Manour (1990) have investigated the magnetic flow 
through the porous medium between two infinite 
plates. Hamza (1999) has studied the suction and 
injection effects of flow between parallel plates. 
Soundalgekar and Uplekar (1986) studied the result 
of heat transfer considering constant temperature. 
Singh and Ram (1978) thought of streamline flow of 
an electrically conducting fluid through a channel 
within the presence of transversal magnetic flux 
underneath the influence of periodic pressure *Corresponding author e-mail: wilcoxbk@fuotuoke.edu.ng 
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gradient and resolved the governing equation by the 
tactic of Pierre Simon de Laplace rework. The 
requirements of recent machinery have motivated 
the interest in fluid flow studies, which involve the 
interaction of many phenomena.  
One such study is given, once a viscous fluid flows 
over a porous surface has its significance in several 
engineering issues like flow of liquid in a very 
porous bearing Joseph and Tao (1966), within the 
field of water in fluid channel beds, in oil technology 
to check the movement of gas, oil and water through 
the oil reservoirs, in chemical engineering for 
filtration and purifications method. Cunningham and 
Williams (1980) conjointly reportable many geology 
applications of flow in porous medium, viz. porous 
rollers and its natural prevalence within the flow of 
rivers through porous banks and beds and also the 
flow of oil through underground porous rocks. 
Brinkman (1949) planned modification of the 
Darcy’s law for porous medium. In most of the 
examples, the fluid flows through porous medium, 
have two regions.  
In region I, the fluid is unengaged to flow and in 
region II, the fluid flows through the porous medium 
Cox (1991). Bunonyo et al. (2017) investigated flow 
of blood although a channel by presumptuous the 
Jeffrey fluid to be blood and analyze the obtained 
results. Moreover, Emeka et al. (2019) conjointly 
researched on heat and mass transfer of MHD free 
convective dissipation with heat absorption and 
reaction result. Bunonyo et al. (2019) investigated 
the periodic MHD elastic flow in a very porous 
channel with heat in the presence of magnetic flux. 
The developed equations were resolved analytically 
using perturbation technique to get the velocity and 
temperature profiles. During this analysis, we have a 
tendency to investigated MHD convective flow of 
Jeffrey fluid in a very parallel porous moving plate 
as we developed governing equations by considering 
oscillation on the perturbed momentum and energy 
equations, thenceforth we have a tendency to acquire 
the velocity and temperature profiles analytically 
with some pertinent parameters concerned. 
Furthermore, investigate if those parameter 
influences the flow behaviors as it progresses at the 
boundary surface and away from it. 
 
MATHEMATICAL FORMULATION 
We consider an MHD Convective Flow of Jeffrey 
Fluid in Parallel Permeable Moving Plates. It is 
assumed that the fluid is electrically conducting, 

incompressible and heat absorbing. The flow is 
directed towards the x axis and yaxis 
perpendicular to the direction of fluid flow. A 
uniform magnetic field is applied normal to the flow 
direction. It is assumed that the upper plate is 
moving with a velocityup , oscillating temperature 
and is varying with time. Under the said assumptions 
the boundary layer equation of velocity and 
temperature are given as: 
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We transformed equations (2) and (3) using the 
corresponding dimensional parameters in equation 
(5) as: 
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The corresponding boundary conditions are: 
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METHOD OF SOLUTION 
In order to solve equation (6) and equation (7) in a 
purely oscillatory fashion, we adopt the following: 
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Putting equation (9) into equation (6) and (7) as 
follows: 
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Equations (10) and (11) can be rewritten as follows: 
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Solving equation (10) and (11), we have the 
following: 
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We can now solve equation (14), the non 
homogenous ordinary differential equation with 
solution as: 
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Solving for the undetermined coefficients in 
equations (13) and equation (14) using the 
corresponding boundary conditions in equation (12), 
we obtain the velocity and temperature profiles as: 
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RESULTS 
 
The formulated governing equations (10) and (11) 
with the corresponding boundary conditions are 
solved analytically using perturbation method 
involving oscillation term. In order to have physical 
insight of the pertinent parameters on the velocity 
and temperature profiles in equations (16) and (17), 
numerical simulation were carried out and here are 
results presented in Figures 1-16 in addition, we 
considered the following values 2, 0.5,M Da   

0.71, 10,Pr Gr  0.2, 3, 0.3,Q up   1,t   
0.3  . 
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 0.1,0.2,0.3,0.5A   

 0.1,0.2,0.3,0.5Q    

 ( )y   

 ( )y   

Fig. 1. Influence of Q on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.5, 3, 0.3, 1, 0.3M Da Pr Gr A up t         

 y   

Fig. 2. Influence of A on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t         

 y   
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 0.1,0.2,0.3,0.5    

 0.1,0.2,0.3,0.5        

 ( )y   

Fig. 3. Influence of  on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t         

  

 y   

 y   

Fig. 4. Influence of  on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 0.3, 1, 0.3M Da Pr Gr Q up t           
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 0.1,0.2,0.3,0.5t    

 1,2,3,5M    

 ( )y   

 ( )u y   

 y   

 y   

Fig. 5. Influence of t on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t         

Fig. 6. Influence of M on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t         
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 0.1,0.2,0.3,0.5up    

 0.1,0.2,0.3,0.5Da    

 ( )u y   

 ( )u y   

 y   

 y   

Fig. 7. Influence of up on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t         

Fig. 8. Influence of Da on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t         
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 0.63,0.71,3,7Pr    

 5,10,15,20Gr    

 ( )u y   

 ( )u y   
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Fig. 9. Influence of Pr on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            

Fig. 10. Influence of Gr on velocity profile while other parameters values are     
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            
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 0.1,0.2,0.3,0.5Q    

 0.1,0.2,0.3,0.5    

 ( )u y   

 ( )u y   

 y   

 y   

Fig. 11. Influence of Q on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            

Fig. 12. Influence of  on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            
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 0.1,0.2,0.3,0.5A   

 0.1,0.2,0.3,0.5    

 ( )u y   

 ( )u y   

 y   

 y   

Fig. 13. Influence of A on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            

Fig. 14. Influence of  on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            
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 0.1,0.2,0.3,0.5    

 0.1,0.2,0.3,0.5t    

 ( )u y   

 ( )u y   

 y   

 y   

Fig. 15. Influence of  on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            

Fig. 16. Influence of t on velocity profile while other parameters values are  
2, 0.5, 0.71, 10, 0.2, 3, 0.3, 1, 0.3M Da Pr Gr Q up t            
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DISCUSSION  
 
We have solved the formulated problems 
analytically in equations (17) and (18) and 
simulations were done and results presented in 
Figures 1 – 15 graphically. In this section we shall 
discuss as follows:  
 
Figure 1 depicts the influence of radiation 
parameter Q on the temperature profile ( )y  with 
other parameters 2, 0.5, 0.71,M Da Pr    

10, 0.2, 3, 0.3, 1, 0.3Gr Q up t       . 
It can be seen that the temperature profile is 
maximum at the walls of the plate and for the all 
values of the radiation parameter Q , and it satisfied 
the set boundary conditions. But we observed that 
the temperature decrease as boundary layer thickness 
increases, up to the point that the temperature 
profile ( )y tends to zero as y  .  
 
In Figure 2 it can be observed that there is an 
influence of suction parameter A  on the 
temperature profile    with other parameters 

10, 0.2, 3, 0.3, 1, 0.3Gr Q up t        
2, 0.5, 0.71,M Da Pr   . It showed that as the 

suction parameter value increase the temperature 
profile decreases due to the fact that suction effect 
helps to inhibit the heat convection. It is highest at 
the wall but decrease as the thickness of the wall 
increase to the point that the suction cannot help to 
reverse the heat flow. 
 
We can clearly see the influence of the small 
positive constant  on the temperature profile in 
Figure 3. It is shown that the temperature profile was 
maximum at 0y   which agrees with the boundary 
conditions set out irrespective of the  value but it 
began to decrease over time as the boundary layer 
increase and the flow with highest  value tends to 
converge fast than the rest as y  . 
 
The influence of magnetic field M on velocity 
profile ( )u y   is depicted in Figure 6. It is observed 
that the velocity is 0.2u  at the start of the 
boundary layer 0y   and grew to the peak before 
decreasing to a minimum level as the boundary 
thickness is increases. It is also noticed that the 
increasing value of the magnetic field parameter 

tends to reduce the peak thereby decreasing the 
velocity profile to a new level as y  . What 
causes the exponential decrease in the velocity 
profile is due to Lorentz force, an applied force 
perpendicular to the direction of the flow.  Figure 7 
It can be seen that the velocity profile ( )u y is 
influenced by the increase values of the initial 
velocity parameter up . The velocity profile increase 
from the start of the boundary and grew to the peak 
before decreasing as the boundary layer increase as 
the flow increase to zero as y which physically 
agrees with set boundary conditions within the 
research framework. 
 
Figure 8 shows the influence of permeability 
parameter on the velocity profile ( )u y . The figure 
show that the fluid velocity increases significantly 
with an increase in Darcy parameter Da . It is due to 
the fact that when we increase Darcy number, it 
increases the size of the pores inside the porous 
medium by which the drag force decreases and thus 
the velocity increases. 
 
Figure 9 shows that increase in the values of Prandtl 
parameter Pr decrease the velocity rapidly near the 
wall of plate due to specific heat capacity which is 
far more than that of the thermal conductivity. The 
velocity is seen to decrease greatly in the momentum 
boundary layer thickness. In Figure 10, the velocity 
profile is been influenced by the increase in Grashof 
number Gr . It is a fact that as the Grashof number 
increase the velocity profile also increase and 
physically this is true because it has the tendency to 
increase the thermal effect. This give rise to an 
increase in induced flow and it is noticed that the 
Grashof number do not have any influence as the 
fluid move away the boundary surface. 
 
The influence of the increasing values of the heat 
absorption parameter Q is observed in Figure 11. It is 
seen that the heat absorption parameter increase lead 
to a corresponding decrease in velocity profile ( )u y . 
This is because of the nature of the fluid and we 
noticed that the current peak is less than the 
preceding velocity peak which clearly shows the 
declining in velocity close to the boundary surface 
but diminished to zero far from the boundary 
surface. It is seen that Figure 12 that the velocity 
profile ( )u y  increases with increasing values of 
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Jeffrey fluid parameter . This is of the view that 
velocity profile increases starting from zero and 
attain different peak values close to the boundary 
surface but decreases to zero as the boundary gets 
larger. And the result agrees with the boundary 
conditions as stated above. 
 
Figure 13 depicts the influence of the suction 
parameter A  on the velocity profile. It’s clearly 
shown that as the suction parameter constant 
increase the velocity profile reduces to the circled 
point thereafter, it start to increase and approaches 
zero as the boundary layer gets larger, y  .  
 
We noticed in Figure 14 that as the  increases the 
velocity profile also increase to a certain height 
before start to decelerate as it gets away from the 
boundary layer. The velocity continuously decreases 
as the thickness of the boundary increase and over 
time it diminishes to zero as y  .  
 
Figure 15 shows the influence of oscillation 
parameter on the velocity profile. It can be seen that 
as the oscillation parameter  increase the velocity 
profile increased along the boundary up to a 
maximum level of the velocity before it starts to 
decrease exponentially as it gets further from the 
boundary layer. This is so true because from the 
beginning of the flow with steady oscillation it basic 
assists the flow to accelerates fast to the peak but 
diminishes as the boundary layer is increased. Figure 
16 depicts the involvement of the time parameter on 
the velocity profile. It is observed that the velocity 
slowly attain the maximum value close to the 
boundary layer before decreasing until it gets to the 
minimum value at y  . 
 
CONCLUSION 
 
Analytical solutions are obtained for the MHD 
Convective Flow of Jeffrey Fluid in Parallel 
Permeable Moving Plates. One of the plate moving 
uniformly and the other is with suction at rest. The 
perturbation method with oscillatory terms attached 
is used to transform the non-linear partial differential 
equations to ordinary differential equations which 
are solved and the results and evaluated analytically 
and results presented graphically. In the light of the 
present investigation, we conclude as follows:  
 

(1) The velocity profile ( )u y is influenced by 
the Magnetic field parameter M , the 
velocity profile decrease as the Magnetic 
parameter increases. 

(2) The velocity profile is influenced strongly 
by the Grashof number Gr increase and it’s 
a case of cooling for 0Gr    

(3) Darcy number Da also influence the velocity 
profile in that it increasing the velocity 
profile to increase 

(4)  The Jeffrey parameter strongly influence 
the flow velocity close to the wall of the 
plates 

(5) The temperature profile is influenced by the 
increasing values of the suction parameter, 
increasing A caused the temperature to 
decrease. 
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APPENDIX 
 
 

NOMENCLATURE  
,u v    Dimensional velocity profile 

ou   Perturbed velocity profile 
,x y    Dimensional distances 

oV   Suction velocity 
A   Suction constant 
Q   Heat absorption parameter 

oQ   Heat absorption constant 

Tk   Thermal conductivity of the fluid 

Da   Darcy parameter 
Gr   Thermal Grashof number 
up   Wall dimensionless velocity 

oB   Strength of applied magnetic field 

Cp   Specific heat capacity at constant pressure 
M   Magnetic parameter 
T    Temperature of the fluid 
T   Temperature of the fluid far from the plate 
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Greek Symbols 
 

   Kinematic viscosity 
Pr   Prandtl number 
   Dynamic viscosity  
g   Acceleration due to gravity  
   Oscillatory frequency 

T   Thermal expansion coefficient  

   Dimensionless temperature 

o   Dimensionless perturbed temperature 
   Density of the fluid 
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